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Azimuthal instability of spinning spatiotemporal solitons
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We find one-parameter families of three-dimensional spatiotemporal bright vortex solitons~doughnuts, or
spinning light bullets!, in dispersive quadratically nonlinear media. We show that they are subject to a strong
instability against azimuthal perturbations, similarly to the previously studied~211!-dimensional bright spatial
vortex solitons. The instability breaks the spinning soliton into several fragments, each being a stable nonspin-
ning light bullet.

PACS number~s!: 42.65.Tg, 42.65.Ky
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Optical spatiotemporal solitons, orlight bullets ~LBs!,
have been attracting a growing interest in the last dec
@1–16#, as they are expected to be new fundamental phys
objects with a potential for using them in ultrafast all-optic
switching devices in planar and bulk media. It is well know
that LBs formally exist in dispersive media with the se
focusing cubic~Kerr! nonlinearity, but, in both two- and
three-dimensional~2D and 3D! cases, they are unstab
against spatiotemporal collapse@11#, induced by a combined
effect of the nonlinearity and anomalous dispersion@3#.
However, collapse does not take place, making stable
possible, in media with saturable@8–10#, quadratic@12,13#,
and cubic-quintic@14# nonlinearities, in off-resonance two
level systems@15# as well as in self-induced-transparen
media @16#. The second-harmonic generation~SHG! media
are most appropriate for the experimental observation
LBs. Theoretical work in this direction, which had begu
two decades ago@1# and continued recently@12,13#, has led
to the first experimental observation of optical spatiotem
ral solitons@6#. In fact, the observed object was a 2D sp
tiotemporal soliton in a 3D sample of an optical crystal~i.e.,
it was localized in the longitudinal and one of transve
directions, but delocalized in the other transverse coo
nate!. It is also relevant to mention that, while a majority
works on LBs were dealing with solitons of the bright typ
dark LBs were considered too@7#.

In this Rapid Communication we aim to find numerica
one-parameter families of 3Dspinning ~vortex! LBs in a
model of a type-I SHG medium. The model assumes diff
ent coefficients of the group velocity dispersion~GVD! at the
fundamental-frequency~FF! and second-harmonic~SH!
waves @12#, but neglects the Poynting-vector walkoff an
temporal group-velocity mismatch. Spinning LBs in mode
of this type were recently introduced in a brief form in Re
@17#, using a variational approximation and very limited n
merical computations. Nevertheless, a crucially important
sue is the~in!stability of the spinning LBs against azimuth
perturbations, which will be considered in the present wo

It should be noted that azimuthal instability of 2D spi
ning solitons, which may also be interpreted as quasi-
~cylindrical! solitons in a 3D medium, was studied in deta
in the works in Ref.@18#. However, as was shown still in th
early work @1#, all the solitons of the cylindrical type in 3D
SHG media are subject to modulational instability along
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cylindrical axis; therefore, it is an issue of principal intere
to study fully localized 3D LBs, which may be naturall
generated as a result of development of the modulatio
instability ~similar to the generation of an array of spots
the snake-type modulational instability of a spatial soliton
a 2D SHG medium@19#!.

The scaled equations describing type-I SHG proces
~i.e., involving a single FF polarization! in the ~311!D ge-
ometry in the presence of dispersion and diffraction are w
known @12#:
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Here, T and X, Y are normalized temporal and transver
spatial coordinates,Z is the normalized propagation distanc
and u, v are envelopes of the FF and SH fields. A pha
mismatch between the two harmonics isb, ands is the ratio
of the GVD coefficients at the two frequencies. In the p
ticular cases51, the model possesses an additional s
tiotemporal spherical symmetry@12,13#.

We look for stationary solutions to Eqs.~1! in the
form u5U(r ,T)exp(ikZ1isu), v5V(r ,T)exp@2(ikZ1isu)#,
where u is the polar angle in the transverse plane,k is a
wave number shift, and the integers is the ‘‘spin.’’ The
amplitudesU andV may be taken real, obeying the equatio
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In Eqs. ~2!, s and b are material and carrier-wave param
eters, whilek parametrizes the family of the stationary sol
tions. Note that solutions of this form assume that the ph
helix is in the transverse spatial plane (X,Y). One can also
consider LBs with a phase helix in a spatiotemporal plane
the general case,sÞ1, such solutions lack the axial symme
R1505 ©2000 The American Physical Society
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FIG. 1. Nonlinear wave num-
ber k and HamiltonianH vs the
energyI for the light bullets with
spin s51.
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try; therefore, their analysis is much more complicated an
left beyond the scope of this work.

The total energy of LBs isI 5***(uuu21uvu2)dXdYdT
[I u1I v , which is a conserved quantity. The other dynam
cal invariants are the HamiltonianH, the momentum~equal
to zero for the solution considered here!, and the angular
momentumL in the transverse plane@20#. One can readily
find from Eqs.~1! and ~2! that the Hamiltonian and the an
gular momentum of stationary spinning LBs are related
follows: 3H52kI 1bI v , andL5sI.

We have numerically found one-parameter families
stationary 3D spinning-LBs solutions which have the sha
of a doughnut with a hole~phase dislocation! in the center,
for different values of the GVD-asymmetry parameters. A
standard band-matrix algorithm was used to deal with
corresponding two-point boundary-value problem.

It was found that solutions exist provided that their ene
exceeds a certainthreshold. At the exact phase-matchin
point (b50), the threshold vanishes. For stationary so
tions to decay exponentially at infinity, the wave numberk
has to obey the requirementsk.0 for b>0, or k.2b/2
is
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for b,0. We were able to find solitons only in the ca
when the SH dispersion is anomalous or zero,s>0.

To characterize the LB solutions, in Fig. 1 we display t
wave numberk and the HamiltonianH of spinning LBs with
s51 versus its net energyI for three representative values o
the mismatchb and for various values of the GVD
asymmetry parameters. For larger values of the ‘‘spin’’
~e.g., s52), the results are similar, although the thresho
energies are higher~see Fig. 2!. In Fig. 3 we plot the curves
k5k(I ) and H5H(I ) for both nonspinning and spinning
LBs with s52 and three values ofb. Solid and dashed lines
correspond, respectively, to the branches which are, res
tively, stable and unstable against azimuthal perturbations~in
fact, only the zero-spin solutions are stable!. To conclude the
discussion of the stationary solutions, we note that a co
parison with the simple variational approximation for th
spinning LBs, briefly described in Ref.@17#, demonstrates
that, although the variational approximation is not very a
curate, it correctly describes qualitative features of the sh
of the spinning LBs.

Proceeding to the stability simulations, we solved E
FIG. 2. The same as in Fig. 1
for s52.
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FIG. 3. Comparison between
dependences of the wave numb
k and HamiltonianH on the en-
ergy I for the nonspinning (s
50) and one-ring~fundamental!
spinning (s51 and s52) light
bullets. In this figure,s52.
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~1!, using the Crank-Nicholson scheme. The correspond
system of nonlinear equations was solved by means of
Picard iteration method, and the resulting linear system
treated by means of the Gauss-Seidel iterative scheme.
good convergence we needed, typically, five Picard iterati
and eight Gauss-Seidel iterations. The transverse grid
sizes were 0.08<DX5DY5DT<0.12 and, in most cases
the longitudinal step size wasDZ50.01. To avoid distortion
of the instability development under the action of the pe
odicity imposed by the Cartesian computational mesh,
added initial perturbations that mimic random fluctuations
a real system~cf. Ref. @21#!. Figures 4 and 5 display th
outcome of numerical simulations: the doughnutlike sp
ning LBs arealways unstable against azimuthal perturb
tions, which lead to the breakup of the doughnuts into s
eral nonspinningLBs. In fact, this instability is quite similar
to the theoretically@18# and experimentally@22# known in-
stability of ~211!D one-ring ~fundamental! and two-ring
~second-order! spatial bright vortex solitons in saturable an
quadratically nonlinear media. It is also noteworthy th
higher-order nonspinning solitary waves in saturable me
exhibit similar transverse instabilities that break their a
muthal symmetry@21,23#. Examples of the breakup of th
one-ring spinning LBs withs51 ands52 are displayed in
Fig. 4. Three emerging fragments were found to have
equal energies in thes51 case, whereas four fragments a
found to have exactly equal energies in thes52 case. After
the breakup of the doughnut, the fragments fly out tang
tially, rather than keeping to spiral@similar to what is known
about the instability-induced breakup of the~211!D spatial
vortex solitons@18##. This feature is illustrated by Fig. 5, in
which a succession of images at different values ofZ @7.5
<Z<9 in ~a! and 4.2<Z<8.2 in ~b!# are juxtaposed. Thus
the initial angular momentum of the doughnut-shaped ‘‘sp
ning’’ soliton is converted into the angular momenta of t
emerging nonspinning fragments. Last, we have found
the number of the emerging fragments is roughly twice
original spin values. The dependence of the number of t
fragments on the other parameters is fairly weak.

The results of direct dynamical simulations reported
this work must comply with the stability analysis based
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Eqs.~1! linearized around of the stationary spinning LBs.
particular, similar to Refs.@18,23#, we expect that the num
ber of the emerging fragments is determined by the a
muthal index of the perturbation mode having the larg
growth rate. However, the corresponding eigenvalue pr
lem turns out to be prohibitively complex; therefore, its s
lution is left beyond the scope of this work.

Recently, spinning 3D LBs were also studied in detail
the cubic-quintic model@14#, and their stability was tested in
direct simulations@24#. As a result, it has been found that th
doughnut spatiotemporal solitons are always azimuthally
stable in this model too. Nevertheless, in some cases~when
the soliton’s energy is large enough!, this instability may be
much weaker than that found in the present work for SH
nonlinearity. In fact, spinning solitons in the cubic-quint
model may have a chance to be observed in an experime
virtually stable objects@24#.

To create spinning solitons in the experiment, one c

FIG. 4. Gray-scale contour plots illustrating the instability of t
one-ring spinning light bullets. In~a! and ~b! s51,k53 while in
~c! and ~d! s52,k52.2. The other parameters ares52 and b
523. The propagation distance isZ58 for s51, andZ57 for s
52. Only the fundamental-frequency component is shown.
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give the necessary vorticity to a short cylindrical laser pul
passing it through a properly fabricated phase mask@22#. To
estimate real physical parameters at which the spinning
and their instability can be observed in the experiment~simi-
lar to the experimental observation of the instability of t
spatial vortex bright solitons in Ref.@22#!, we can use the
parameters at which the 2D spatiotemporal solitons in
SHG media were recently observed in Refs.@6#. In the
LiIO 3 optical crystal~in which the necessary temporal di
persion is induced artificially, by means of a grating!, the
light with the intensity;10 GW/cm2 self-traps into a spa
tiotemporal soliton with characteristic temporal and spa
sizes;100 fs and 40mm, respectively. In the case of the 3
LB, the intensity should be, roughly, twice as large~see Ref.
@12#!. Next, Fig. 3 shows that, for the spinning LB withs
51, the energy is, typically, five time as large as for t
zero-spin soliton with the same size~quite a similar conclu-

FIG. 5. Juxtaposed images showing trajectories of the nons
ning fragments flying out after the breakup of the spinning lig
bullet. In ~a! s51, and in~b! s52. The other parameters are th
same as in Fig. 4. Only the fundamental-frequency componen
shown.
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sion about the ratio of the energies in the cubic-quin
model was obtained in Ref.@14#!. Thus, we arrive at an
estimate for the energy of the spinning 3D LB of about 1mJ.
These values of the physical parameters suggest that the
periment aimed to observe 3D LBs should be quite feasi

For the physical interpretation of the results, it is al
important to understand the real meaning of the propaga
distances that appear in the above figures. A typical size
thes51 LB is, in the dimensionless units,Dx;2; hence, the
corresponding diffraction length iszD;(Dx)2;4. Thus, the
comparison with Fig. 4 and with other numerical results su
gests that the full splitting of the spinning LB takes pla
within a few diffraction lengths. On the other hand, a typic
value ofzD in physical units is;325 mm~for the FF wave!
@6#. This shows that the splitting process may be observe
available samples having lengths up to 25 mm@6#.

In conclusion, in the framework of the standard model
the type-I second-harmonic generation in a thre
dimensional dispersive medium, we have found numerica
one-parameter families of spatiotemporal doughnut-sha
spinning~vortex! solitons. All the spinning solitons show
strong symmetry-breaking azimuthal instability. The ins
bility splits the spatiotemporal soliton into stable zero-sp
light bullets~at least three!, which fly out tangentially to the
initial ring.
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