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Azimuthal instability of spinning spatiotemporal solitons
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We find one-parameter families of three-dimensional spatiotemporal bright vortex sdbitmnghnuts, or
spinning light bulletg in dispersive quadratically nonlinear media. We show that they are subject to a strong
instability against azimuthal perturbations, similarly to the previously stud@ed)-dimensional bright spatial
vortex solitons. The instability breaks the spinning soliton into several fragments, each being a stable nonspin-
ning light bullet.

PACS numbdis): 42.65.Tg, 42.65.Ky

Optical spatiotemporal solitons, dight bullets (LBs), cylindrical axis; therefore, it is an issue of principal interest
have been attracting a growing interest in the last decad® study fully localized 3D LBs, which may be naturally
[1-16], as they are expected to be new fundamental physicaglenerated as a result of development of the modulational
objects with a potential for using them in ultrafast all-optical instability (similar to the generation of an array of spots by
switching devices in planar and bulk media. It is well known the snake-type modulational instability of a spatial soliton in
that LBs formally exist in dispersive media with the self- & 2D SHG mediunj19]). N
focusing cubic(Kerr) nonlinearity, but, in both two- and _ The scaled equations describing type-l SHG processes
three-dimensional2D and 3D cases, they are unstable (i-€., involving a single FF polarizatignin the (3+1)D ge-
against spatiotemporal collapgEL], induced by a combined Ometry in the presence of dispersion and diffraction are well
effect of the nonlinearity and anomalous dispersi@.  known[12]:
However, collapse does not take place, making stable LBs

possible, in media with saturabJ8—10], quadratic[12,13, ia_UJr } ‘92_U+ 192_U+ 52_“ S U*p=0

and cubic-quintid 14] nonlinearities, in off-resonance two- 9Z 2\ gx2  gY? gT2 o

level systemdq15] as well as in self-induced-transparency 1)
media[16]. The second-harmonic generati®HG) media w1l v

are most appropriate for the experimental observation of i— + — _+_+0_) — Bv+u?=0.

LBs. Theoretical work in this direction, which had begun 9Z A\ gx?  gY? o gT?

two decades agfl] and continued recently12,13, has led ]
to the first experimental observation of optical spatiotempotiere, T and X, Y are normalized temporal and transverse
ral solitons[6]. In fact, the observed object was a 2D Spa_spatlal coordinate&, is the normalized propaga_\tlon distance,
tiotemporal soliton in a 3D sample of an optical crygtat., andu, v are envelopes of the FF and SH fields. A phase
it was localized in the longitudinal and one of transverseMismatch between the two harmonicsgisando is the ratio
directions, but delocalized in the other transverse coordiof the GVD coefficients at the two frequencies. In the par-
nate. It is also relevant to mention that, while a majority of ticular casec=1, the model possesses an additional spa-
works on LBs were dealing with solitons of the bright type, tiotemporal spherical symmetfy2,13.
dark LBs were considered tdd]. We look for stationary solutions to Eqggl) in the

In this Rapid Communication we aim to find numerically form u=U(r,T)exp(xZ+is6), v=V(r,T)exqd2(ixZ+is6)],
one-parameter families of 3Bpinning (vorteY LBs in a  Wwhere 6 is the polar angle in the transverse plarejs a
model of a type-I SHG medium. The model assumes differwave number shift, and the integeris the “spin.” The
ent coefficients of the group velocity dispersi@\VD) atthe ~ amplitudesJ andV may be taken real, obeying the equations
fundamental-frequency(FF) and second-harmonidSH)

waves[12], but neglects the Poynting-vector walkoff and 1 192_U 10U S_2 6’2_U A U+UV=0
temporal group-velocity mjsmatch. Spinning. LBs in models 2\ g2 "roar g2 IT2 K -9
of this type were recently introduced in a brief form in Ref. @

[17], using a variational approximation and very limited nu- 1
merical computations. Nevertheless, a crucially important is- =
sue is the(in)stability of the spinning LBs against azimuthal 4
perturbations, which will be considered in the present work.

It should be noted that azimuthal instability of 2D spin- In Egs.(2), o and g are material and carrier-wave param-
ning solitons, which may also be interpreted as quasi-2Ceters, whilex parametrizes the family of the stationary solu-
(cylindrical) solitons in a 3D medium, was studied in detail tions. Note that solutions of this form assume that the phase
in the works in Ref[18]. However, as was shown still in the helix is in the transverse spatial plan¥,f). One can also
early work[1], all the solitons of the cylindrical type in 3D consider LBs with a phase helix in a spatiotemporal plane. In
SHG media are subject to modulational instability along thethe general case;# 1, such solutions lack the axial symme-

&2V+1&V 452V+ v 2k+B)V+U?=0
a7 Tz g TGk AVEUTEO
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try; therefore, their analysis is much more complicated and isor 8<0. We were able to find solitons only in the case
left beyond the scope of this work. when the SH dispersion is anomalous or zerg;0.

The total energy of LBs is=[[[(Ju|?>+]|v]|?)dXdYdT To characterize the LB solutions, in Fig. 1 we display the
=|,+1,, which is a conserved quantity. The other dynami-wave numbek and the Hamiltoniam of spinning LBs with
cal invariants are the Hamiltoniaf, the momentunfequal  s=1 versus its net energyfor three representative values of
to zero for the solution considered hgrand the angular the mismatchg8 and for various values of the GVD-
momentumL in the transverse plan@0]. One can readily asymmetry parametes. For larger values of the “spin”
find from Eqgs.(1) and(2) that the Hamiltonian and the an- (e.g.,s=2), the results are similar, although the threshold
gular momentum of stationary spinning LBs are related agnergies are highdsee Fig. 2 In Fig. 3 we plot the curves
follows: 3H=—«l+pl,, andL=slI. k=«(l) andH=H(l) for both nonspinning and spinning

We have numerically found one-parameter families oflBs with o=2 and three values ¢&. Solid and dashed lines
stationary 3D spinning-LBs solutions which have the shapeorrespond, respectively, to the branches which are, respec-
of a doughnut with a holéphase dislocationin the center, tively, stable and unstable against azimuthal perturbations
for different values of the GVD-asymmetry parameterA  fact, only the zero-spin solutions are stablEo conclude the
standard band-matrix algorithm was used to deal with theliscussion of the stationary solutions, we note that a com-
corresponding two-point boundary-value problem. parison with the simple variational approximation for the

It was found that solutions exist provided that their energyspinning LBs, briefly described in Ref17], demonstrates
exceeds a certaithreshold At the exact phase-matching that, although the variational approximation is not very ac-
point (8=0), the threshold vanishes. For stationary solu-curate, it correctly describes qualitative features of the shape
tions to decay exponentially at infinity, the wave numer of the spinning LBs.

has to obey the requiremens>0 for =0, or k>— B/2 Proceeding to the stability simulations, we solved Egs.
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(1), using the Crank-Nicholson scheme. The correspondingqgs.(1) linearized around of the stationary spinning LBs. In
system of nonlinear equations was solved by means of thparticular, similar to Refg18,23, we expect that the num-
Picard iteration method, and the resulting linear system waber of the emerging fragments is determined by the azi-
treated by means of the Gauss-Seidel iterative scheme. Faruthal index of the perturbation mode having the largest
good convergence we needed, typically, five Picard iterationgrowth rate. However, the corresponding eigenvalue prob-
and eight Gauss-Seidel iterations. The transverse grid stdpm turns out to be prohibitively complex; therefore, its so-
sizes were 0.08 AX=AY=AT=<0.12 and, in most cases, lution is left beyond the scope of this work.
the longitudinal step size wasZ=0.01. To avoid distortion Recently, spinning 3D LBs were also studied in detail in
of the instability development under the action of the peri-the cubic-quintic mod€l14], and their stability was tested in
odicity imposed by the Cartesian computational mesh, welirect simulationg24]. As a result, it has been found that the
added initial perturbations that mimic random fluctuations indoughnut spatiotemporal solitons are always azimuthally un-
a real system(cf. Ref. [21]). Figures 4 and 5 display the stable in this model too. Nevertheless, in some casten
outcome of numerical simulations: the doughnutlike spin-the soliton’s energy is large enouglthis instability may be
ning LBs arealways unstable against azimuthal perturba- much weaker than that found in the present work for SHG
tions, which lead to the breakup of the doughnuts into sevhonlinearity. In fact, spinning solitons in the cubic-quintic
eral nonspinningLBs. In fact, this instability is quite similar model may have a chance to be observed in an experiment as
to the theoreticallyf 18] and experimentally22] known in-  virtually stable object$24].
stability of (2+1)D one-ring (fundamental and two-ring To create spinning solitons in the experiment, one can
(second-ordgrspatial bright vortex solitons in saturable and
quadratically nonlinear media. It is also noteworthy that
higher-order nonspinning solitary waves in saturable media
exhibit similar transverse instabilities that break their azi-
muthal symmetry{21,23. Examples of the breakup of the
one-ring spinning LBs witls=1 ands=2 are displayed in
Fig. 4. Three emerging fragments were found to have un-
equal energies in the=1 case, whereas four fragments are
found to have exactly equal energies in g2 case. After
the breakup of the doughnut, the fragments fly out tangen-
tially, rather than keeping to spirggimilar to what is known
about the instability-induced breakup of tf+1)D spatial
vortex solitong 18]]. This feature is illustrated by Fig. 5, in
which a succession of images at different valueZ¢f7.5
<Z<9 in(a) and 4.2Z<8.2 in (b)] are juxtaposed. Thus,
the initial angular momentum of the doughnut-shaped *“spin- ;
ning” soliton is converted into the angular momenta of the ; 0
emerging nonspinning fragments. Last, we have found that X
the number of the emerging fragments is roughly twice the F|G. 4. Gray-scale contour plots illustrating the instability of the
original spin values. The dependence of the number of theone-ring spinning light bullets. Iifa) and (b) s=1,x=3 while in
fragments on the other parameters is fairly weak. (c) and (d) s=2,k=2.2. The other parameters ave=2 and 3
The results of direct dynamical simulations reported in=—3. The propagation distance Zs=8 for s=1, andZ=7 for s
this work must comply with the stability analysis based on=2. Only the fundamental-frequency component is shown.
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sion about the ratio of the energies in the cubic-quintic
model was obtained in Refl4]). Thus, we arrive at an
estimate for the energy of the spinning 3D LB of aboutd.
These values of the physical parameters suggest that the ex-
periment aimed to observe 3D LBs should be quite feasible.

For the physical interpretation of the results, it is also
important to understand the real meaning of the propagation
distances that appear in the above figures. A typical size of
thes=1 LB s, in the dimensionless unitAx~2; hence, the

FIG. 5. Juxtaposed images showing trajectories of the nO”Spi”(':orresponding diffraction length ig,~ (Ax)2~4. Thus, the
ning fragments flying out after the breakup of the spinning light oy harison with Fig. 4 and with other numerical results sug-
bullet. In (&) s=1, and in(b) s=2. The other parameters are the yoqq that the full splitting of the spinning LB takes place
same as in Fig. 4. Only the fundamental-frequency component igpin a few diffraction lengths. On the other hand, a typical
shown. . - L2 !

value ofzp in physical units is~3—5 mm(for the FF wave

[6]. This shows that the splitting process may be observed in
available samples having lengths up to 25 f6h
In conclusion, in the framework of the standard model of
e type-l second-harmonic generation in a three-
dimensional dispersive medium, we have found numerically
one-parameter families of spatiotemporal doughnut-shaped
épinning(vortex) solitons. All the spinning solitons show a
strong symmetry-breaking azimuthal instability. The insta-
bility splits the spatiotemporal soliton into stable zero-spin
light bullets(at least threg which fly out tangentially to the
initial ring.

give the necessary vorticity to a short cylindrical laser pulse
passing it through a properly fabricated phase magk To
estimate real physical parameters at which the spinning LBﬁ1
and their instability can be observed in the experinisimi-

lar to the experimental observation of the instability of the
spatial vortex bright solitons in Ref22]), we can use the
parameters at which the 2D spatiotemporal solitons in th
SHG media were recently observed in Ref§]. In the
LilO 5 optical crystal(in which the necessary temporal dis-
persion is induced artificially, by means of a gralinthe
light with the intensity~10 GW/cn? self-traps into a spa-
tiotemporal soliton with characteristic temporal and spatial D. Mihalache, D. Mazilu, L.-C. Crasovan, and F. Lederer
sizes~ 100 fs and 4Qum, respectively. In the case of the 3D acknowledge grants from the Deutsche Forschungsgemein-
LB, the intensity should be, roughly, twice as laigee Ref. schaft(DFG), Bonn(Grant No. SFB 195 and B. Malomed
[12]). Next, Fig. 3 shows that, for the spinning LB with  appreciates the hospitality of the University of Jena. We are
=1, the energy is, typically, five time as large as for theindebted to Frank Wise for valuable discussions and for
zero-spin soliton with the same sizguite a similar conclu- sending us his work prior to publication.
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